Instruction Manual

Distilling Controller, DSPR400

Version 1.3 (Sep, 2021)

Caution

- This controller is intended to control equipment under normal operating conditions. Failure or malfunction of the controller may lead to abnormal operating conditions, which result in personal injury or damage to the equipment or other property. Devices (limit or safety controls) or systems (alarm or supervisory) intended to warn of or protect against failure or malfunction of the controller must be incorporated into and maintained as part of the control system.
- Installing the rubber gasket supplied will protect the controller front panel from dust and water splash (IP54 rating). Additional protection is needed for higher IP rating.
- This controller carries a 90-day warranty. This warranty is limited to the controller only.

1. Specifications

Input type	RTD (Resistance Temperature Detector): Pt100
Accuracy	± 0.2% full scale
Temperature range	-328°F ~ +932°F, -200°C ~ +500°C
Response time	≤ 0.5s (when FILt =1)
Display resolution	1°C or °F for Mashing Mode. 0.1°C or °F for distilling Mode.
Control mode	Mashing, Distilling
Alarm function	Process/derivation high/low alarm, Acceleration and timer alarm, Latching/pulse action,
Alarm output	Relay contact: 3A for resistive load. 1A for inductive load
Power supply	85~260VAC/50~60Hz
Power consumption	≤ 5 Watt
Working Ambient temperature	0~50°C, 32~122°F
Dimension	48 x 48 x 100 mm (W x H x D, from the front panel to the back)
Mounting cutout	45 x 45 mm

2. Front Panel

1). Top display. This display indicates the temperature sensor read out value. When timer is activated, it will show time and temperature alternately.

2). Bottom display. In distilling mode, this display will show the percentage of power being sent to the external SSR after the initial heat up phase. In mashing control mode, this display will show the set temperature.

3). Temperature setting adjusting indicator. This is the small dot at the lower right corner. In mashing mode, when temperature set point is adjusted, it will start to flash. It reminds you that you need to press the knob to confirm the change. Otherwise, the temperature setting will return back in 2 seconds after you stop the adjustment.

4). AL1 indicator. This red LED indicates the status of Relay 1 (AL1). When it is on, the relay is closed; when it is off, the relay is open.

5). AL2 indicator. This red LED indicates the status of Relay 2 (AL2). When it is on, the relay is closed; when it is off, the relay is open.

6). Mashing mode indicator (MASH). This yellow LED light indicates the operation mode of the controller. When it is on, controller is in mashing mode; when it is off, controller is in distilling mode.

7). Output indicator (OUT). This green LED light is synchronized with output. It shows how much power the regulator is sending out (as a 12VDC control signal pulse through terminal 6 and 7). When it is on solid, the output is 100% on. When it is off, there should be no output. When it is flashing, the frequency of the flashing is an indication of high or low power output. Higher frequency means higher power output.

8). Rotary switch (knob). Turn it clockwise to increase the output power (or selected parameter value); turn it counter-clockwise to reduce the output power (or selected parameter value). Press it briefly to reset the timer (if enabled) and to switch between mashing and distilling mode. Press and hold it for 5 seconds to enter parameter settings menu. Please see section 6 for details.

9). Function key A & B. There are two Function Keys named "A" and "B" can be used to reset/cancel relays. "A" is for Relay 1, Key "B" is for Relay 2. Please check note 20.

3. Wiring Terminals

The pin assignment of the back terminals of DSPR400 is shown in Figure 2.

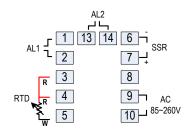
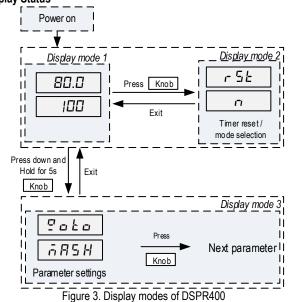


Figure 2. Terminal assignments of DSPR400.

3.1 Sensor connection

DSPR400 only accepts Pt100 RTD temperature sensor. For a three-wire RTD with standard DIN color code, the two red wires should be connected to the terminals 3 and 4. The white wire should be connected to terminal 5. For a two-wire RTD, the wires should be connected to terminals 4 and 5. Jump a wire between terminals 3 and 4.


3.2 Power to the controller

The power cables should be connected to terminals 9 and 10. Polarity does not matter. It can be powered by 85-260V AC power source. Neither a transformer nor jumper is needed to wire it up. For the consistent with the wiring example described later, we suggest you connect the hot wire to terminal 10 and neutral to 9.

3.3 SSR output connection

The SSR control output of the DSPR400 provides a 12V DC signal that can control up to 5 SSRs in parallel. Connect terminal 7 to the positive pole of the SSR (terminal 3 on Auber's SSRs). Connect terminal 6 to the negative pole of the SSR (terminal 4 on the Auber SSRs). Please make sure the SSR is installed on the heat sink with proper current rating.

Display mode 1 (Normal operating mode): When power is turned on, the top display window shows the current sensor temperature reading. When timer is activated, the top display will be switched between the current temperature and current time alternately. In mashing mode, the bottom display will show your set temperature. In distilling mode, the bottom display will show the current power output in percentage (e.g. 50 for 50% power output). Please check section 5 for how to adjust set temperature/power.

Display mode 2 (Time reset & Operation mode selection): This display mode allows you to reset the timer, or to switch between the mashing and distilling operation mode.

A short press of the knob will enter this display mode.

1) The display will show "rSt" on top and "n" at the bottom. This is the exit menu. If you enter this mode by accident, you can press the knob again to exit this display mode without changing anything.

2) Rotate the dial clockwise for one click will change the bottom display to "y". This menu is to reset the timer. Press the knob will reset the timer. It has two purposes. A) If you want to use the timer as regular timer without correlation to the temperature, you can start the timer at any time by the reset button. B) After timer is timed up and process ended, you can restart the process again by the reset button instead of power off the system and power it on again.

3) Rotate the knob with two clicks, the top display will change to "Mode" and bottom will show "Mash*". Rotate the knob again, the bottom display will change to "dStL". These two menus are for setting the controller to either mashing control or distilling control mode. Press the knob will set the controller to the operation mode displayed. Please check section 5.1 for details.

Display mode 3 (Parameter settings): Press down and hold the knob for 5 seconds to enter the display mode 3. Please check section 6 for details.

5. Operation

5.1 Operation mode selection

This controller offers two operation modes, mashing and distilling. When the mashing mode is selected, the controller functions as a temperature controller. It automatically adjusts the power output to hold the temperature at set point. When distilling control mode is selected, the controller functions as a power regulator. It allows the user to manually adjusting the power to control the strength of the boil. The temperature resolution for mashing mode is 1 degree; for distilling mode is 0.1 degree. Figure 4 shows how to select and switch between these two modes.

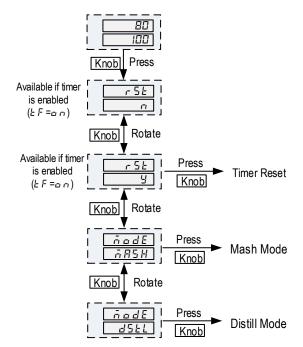


Figure 4. Flow chart for time reset & operation mode selection

Press the knob once. The display will show "rSt". Rotate the knob with two clicks, the top display will change to "Mode" and bottom will show "Mash*". Press the knob will set the controller to mashing mode. When mashing mode is selected, the yellow indicator on the top left corner of the panel will lit. This indicator will be off if the distilling mode is selected.

Note*: due to the limitation of 7 segment LED display, the letter "M" is displayed as "ra".

5.2 Mashing Operation

When first powered up, make sure the controller is in the mashing mode: The yellow colored mashing mode indicator on the upper left corner should be on, and the bottom display has no "P" on the left. If not, please change the control mode to mashing mode as discussed in section 5.1 above. If you were using the controller in the mashing mode when powered off last time, the controller will start in mashing mode.

After controller is powered up, the top LED displays the current temperature reading from the sensor. If temperature sensor is not connected, it will show "orAL". The bottom LED displays your set temperature. To adjust its value, just rotate the knob. Once the value of the setting is changed, a small dot on the right bottom corner will be flashing. It tells you that the setting has been changed but not confirmed. After you adjust the temperature to the desired number, **push the knob to confirm the change**. After confirmation, the new setting will remain on the display and the dot will be turned off. If you forgot to push the dial, the display will return to original set temperature after 2 seconds. The set point will remain unchanged. This mechanism is for preventing temperature set point change by accident.

The Output indicator will stay on solid right after powered up. This mean the controller is heating up the kettle at maximum speed. Once the temperature is getting close to the set point, the output indicator will start to flash at slower rate

or take a pause. It indicates the controller is trying to modulating the power to hold the temperature stable.

For how to set up the timer in mashing mode, please read section 6.2.

5.3 Distilling Operation

When first powered up, make sure the controller is in the distilling mode: the mashing mode indicator on the upper left corner is off and bottom display has a "P" on the left. If not, change the control mode to distilling mode as discussed in section 5.1 above. If you were using the controller in the distilling mode when powered off last time, the controller will start in distilling mode.

The top LED displays the current temperature reading from the sensor. If temperature sensor is not connected, it will show orAL. The controller will not turn on the heater if the sensor is not connected. The bottom LED displays the distilling output in percentage of the power. For example, if you use a 5500 Watts heater, "50" mean the heater is running at 50% of power, or 2750 Watts (5500x50%=2750). You can rotate the knob to adjust the output value. The new setting will take effect automatically. There is no need to push the knob to confirm as the temperature setting change in the mashing mode. For the first time use, while the controller is still in the acceleration phase, you should set the distilling output to a value below 60%. Once the controller finished the acceleration, it will switch to this power level automatically. After getting familiar with your system, you can set to a higher value.

When the controller is powered up, the output indicator will stay on solid. This mean the controller is in the acceleration phase. Once the temperature rise above the acceleration phase, the power output will be reduced to the value as shown on the bottom display. The Output indicator will start to flash at slower rate.

Note, when adjusting the distilling output setting while the controller is still in the acceleration phase, the new setting will be shown on the bottom display. However, it will not take effect until the acceleration phase is finished. If you want to manually control the power output during the entire distilling process, set **dAST** to zero (see section 6.3 for details).

For how to set up the distilling mode, please read section 6.3.

6. Control Parameters

Parameters are divided into four groups (figure 5): **MASH** for mashing control, **DSTL** for distilling control, **ALAM** for alarm settings and **SYST** for system configuration. The same type of parameter may have slightly different names when used in different mode. For example, the timer setting in mashing mode is called "t", while this parameter is called "dt" in the distilling mode.

To enter parameter setting mode, press and hold the knob for at least 5s. Then you will see "GOTO" on the top display. Rotate the knob, you will see the bottom display changes with three different names: **MASH** (for mashing parameters, figure 7), **DSTL** (for distilling parameters, figure 8), **ALAM** (for alarm settings, section 7) and **SYST** (for system settings, figure 6). The parameter values are stored in the controller memory. All the settings remain unchanged if you power it off.

Push the dial to enter the selected parameter group. Then top display shows the current selected parameter name, and the bottom display shows its value/options. Rotate the knob clockwise to increase the value, and rotate it counter-clockwise to reduce the value. Faster rotating speed will change the value rapidly. Once finished, press knob again to confirm and go to next parameter. You can press the knob repeatedly to exit the setting quickly.

6.1 System settings

Parameters that configure this controller and the relays are grouped under this menu.

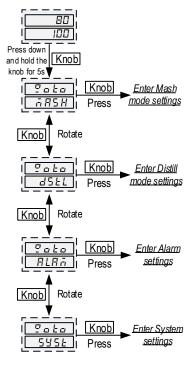


Figure 5. Parameter group selection

Table 1. System configuration parameters

System Configuration						
Display	Code	Description	Setting Range	Initial Setting	Remark	
E F	tF	Timer function	ON, OFF	ON	Note 1	
FF	FF	Hi Temperature finishing function	ON, OFF	ON	Note 5	
Edlr	tdlr	Timer counting direction	dn, uP	dn	Note 1	
PЪ	Pb	Temperature reading offset	Temperature reading -100~+100 °C		Note 2	
FILE	Filt	Digital filter 1-6		1	Note 3	
E - F	C-F	Temp. display unit °C, °F °F Note				
r L I	RL1					
L9 E	Lgc1					
LAF I	LAt1					
SILI	SiL1					
r L 2	RL2	Please check Section 7.				
L9 E 2	Lgc2					
LRE2	LAt2					
5 IL2	SiL2					
μеч	Key					

Note 1. Timer settings: tF, tdlr

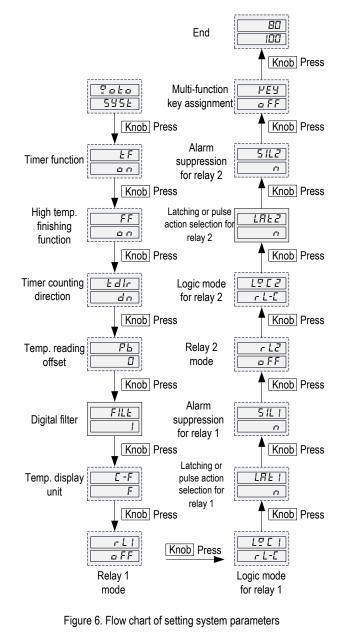
tF: The **timer function** is controlled by a master parameter **tF**. When it is set to **ON**, the timer function (for both mashing and distilling modes) is enabled. When tF is set to **OFF**, the timer function is disabled.

 ${\bf tdlr}:$ Timer direction parameter. Set it to ${\bf up}$ for timer counting up and ${\bf dn}$ for timer counting down.

Note 2. Input offset: Pb

Pb is used to set an input offset to compensate the error produced by the sensor or input signal itself. For example, if the controller displays 2° C when probe is in ice/water mixture, setting Pb = -2, will make the controller display 0° C.

Note 3. Digital sensor filter


If measurement input fluctuates due to noise, then a digital filter can be used to smooth the input. "FILt" may be configured in the range of 1 to 6. Stronger filtering increases the stability of the readout display, but causes more delay in the response to change in temperature. By default, FILt is set to 1 (weakest filtering).

Note 4. Temperature unit setting: C-F

C-F determines the temperature unit. It can be set to C (Celsius, °C) or F (Fahrenheit, °F).

Note 5. High temperature turn off function: FF

This regulator has an automatic shut off feature, when the actual temperature is over the limit temperature you set. The automatic output power shut off mechanism is latched just like a limit controller. Once it is shut off, the heater will not turn on unless the system is reset. Please check section 6.3 for details.

6.2 Mashing Parameters

Table 2. Mashing parameters

Mashing Mode Parameters						
Display	Display Code Description Setting Range		Initial Setting	Remark		
F	t	Mashing time set value	00:00~99:99 (hour: minute)	1:00	Note 7	
ŁSP	tSP	Mashing timer start temp.	-999~+9999 °C or °F	151	Note /	
RLH	ALH	Mashing alarm set temp.	-999~+9999 °C or °F	150	Note 8	
٤a	EO	Mashing ending options ON, OFF OFF		OFF	Note 7	
o5Er	oScr	Overshoot correction	-100~+100	0	Note 9	
RFFE	AttE	Attenuation constant	-2~+2	0	NOLE 9	

Note 7. Timer Function: t, tSP, EO

This timer function allows the controller to show the mashing time. It makes a beeping sound when timed out and will display the process is ended. It can also automatically shut off the controller's power output after time out. The **time duration** is set by the **t** parameter for mashing mode. The unit is hour: minutes.

When timer function is enabled, the timer counting will be started by **timer start temperature, tSP**. When temperature reaches timer start temperature, the timer starts to count. After timer started counting, it will continue even if the temperature drops below this start temperature. The timer can be reset to start from beginning again. To reset the timer, press the knob momentarily, the display will show **rSt** on top and **"n"** at the bottom, rotate the dial clockwise will change the bottom display to **"y"**. Press the knob again will reset the timer (Figure 4) After the timer starts, the top display will be switched between the current temperature and current time alternately in every 6 seconds. The temperature and time display can be easily differentiated with their appearance. The temperature reading has two or three digits. For example, 212 degrees will be displayed as "212". The timer display has four digits with flashing colon in the middle. For example, "01:20" for 1 hour 20 minutes.

When time counting ends, the controller will generate six long beeps. The top display will switch between the current temperature and "End" alternately. After timer ends, the power output can be configured either to continue heating, or shut off. It is controlled by the parameter called ending options, EO. Set it to **ON** for continue heating, set it to **OFF** to turn off the output.

If you want to use the timer as a regular timer without correlating to the temperature setting, you can set the tSP below the ambient temperature (or zero). The timer will start as soon as the regulator is powered up. You can use the reset button (rSt) to reset the timer at any time.

Note 8. Alarm Function (for built-in buzzer only): ALH

DSPR400 has a built-in buzzer that can be programmed to beep when temperature reaches the **alarm set temperature**, **ALH**. The alarm will generate four short beeps every time the temperature rise from below ALH to higher than ALH. The alarm function can be used to notify the operator when temperature is approach the boil. The alarm function does not affect the heating or the time function, it only provides the alarm sound.

Note 9. Temperature Control Tuning Parameters: oScr, AttE

The mashing control mode utilizes Al algorithm instead of the commonly used PID or On/off control algorithm. The program is optimized for beer mashing. For most system, there is no need to tune. It allows the system to heat up at maximum speed, then hold the temperature stable with one-degree precision. If you are not satisfied with the control result, these two parameters will help you to fine tune the system. The **overshot correction**, **oScr** is for adjusting the temperature overshot during the initial heat up. For example, if the temperature overshot 3 degrees, set oScr = 3 should remove the overshoot. This parameter has no effect after the temperature reach the set point. The **attenuation constant**, **AttE** is for adjusting the temperature stability during mashing. The value is from -2 to +2. The default value is 0. If the temperature fluctuates more

AUBER INSTRUMENTS

than one degree, user can increase the value. If the controller takes too much time to correct the temperature drop, user can reduce the AttE to make the system more responsive.

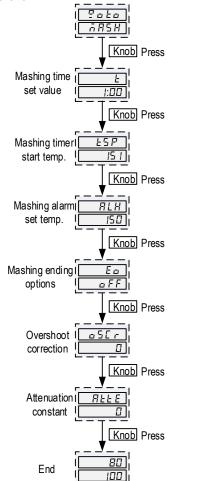


Figure 7. Flow chart of setting mashing parameters

6.3 Distilling parameters

For the easy of discussion, we divide the distilling mode into two phases, the **initial heating phase** and **distilling phase**. During the initial heating phase, power output is set high to accelerate the temperature rise. During the distilling phase, the power output is lowered to prevent the impurity being evaporated. We name the output setting for the distilling phase as "**Distill Output**" setting. Its value is always displayed on the bottom LED display and can be adjusted by turning the knob.

Table 3.	Distilling	parameters

	Distilling Mode Parameters					
Display	ay Code Description Setting Range		Initial Setting	Remark		
dR5E	dAST	Distilling acceleration set temp.	-999~+9999 °C or °F	170	Note 10	
dout	dOUT	Distilling acceleration output power	0~100%	100	Note 10	
dĿ	dt	Distilling time set value	00:00~99:99 (hour: minute)	6:00	Note 11	
dESP	dtSP	Distilling timer start temp.	-999~+9999 °C or °F	172		
<i>d</i> ₽LH	dALH	Distilling alarm set temp.	-999~+9999 °C or °F	170	Note 12	
dFSP	dFSP	Distill finishing temperature	-999~+9999 °C or °F	200	Note 13	
dEo	dEO	Distilling ending options	ON, OFF	OFF	Note 14	

Note 10. Acceleration heating function: dAST, dOUT

DSPR400 can accelerate heating speed of the initial heating phase by running the heater at high power, then reduce the power once the temperature is getting close to the boil. The heating acceleration is controlled by two parameters, Distilling acceleration set temperature, dAST and Distilling acceleration output power, dOUT. The dAST set the temperature limit that below this temperature, the controller will output at a power determined by the dOUT. When temperature rise to the dAST, the output will automatically reduce to the evaporation of impurity. Since the heater power and liquid volume varies between each application, we suggest the dAST to be set at least 10 degree (Fahrenheit) below the boiling point for the first time use. As you getting familiar with your system, you can change this setting to higher or lower. The dOUT is the power used during initial heating phase. The unit is in percent of power. It should be set to 100% unless you have a very powerful heater with very small amount of liquid. The dOUT setting does not limit the power regulation range for distilling phase. If you don't need to use this feature, set dAST to 0, so this controller will work as a manual mode controller over the entire temperature range.

Note 11. Timer Function: dt, dtSP.

This timer function allows the controller to show the distilling time. It makes a beeping sound when timed out and will display the process is ended. It can also automatically shut off the controller's power output after time out. The **time duration** is set by **dt** parameter for distilling mode. The unit is hour: minutes.

When timer function is enabled, the timer counting will be started by **timer start temperature**, **dtSP**. When temperature reaches timer start temperature, the timer starts to count. After timer started counting, it will continue even if the temperature drops below this start temperature. The timer can be reset to start from beginning again. To reset the timer, press the knob momentarily, the display will show **rSt** on top and **"n"** at the bottom, rotate the dial clockwise will change the bottom display to **"y"**. Press the dial again will reset the timer (Figure 4)

After the timer starts, the top display will be switched between the current temperature and current time alternately in every 6 seconds. The temperature and time display can be easily differentiated with their appearance. The temperature reading has two or three digits. For example, 212 degrees will be displayed as "212". The timer display has four digits with flashing colon in the middle. For example, "01:20" for 1 hour 20 minutes.

If you want to use the timer as a regular timer without correlating to the temperature setting, you can set dtSP below the ambient temperature (or just zero). The timer will start as soon as the regulator is powered up. You can use the reset button (rSt) to reset the timer at any time.

Note 12. Alarm function for removing the foreshot/heads (for built-in buzzer only): dALH

DSPR400 has a built-in buzzer that can be programmed to beep when temperature reaches the alarm set temperature, AH. The alarm will generate four short beeps every time the temperature rise from below AH to higher than AH. The alarm function can be used to notify the operator to remove the foreshots/heads at specific temperature close to the component boiling point. The alarm function does not affect the heating or the time function, it only provides the alarm sound.

Note 13. High temperature finish function, FF and dFSP.

This regulator can stop the distilling when the actual temperature is over the limit temperature you set. The function is latched just like a limit controller. Once it is the process is ended, it will not start again when temperature drops back, unless the system is reset.

This feature is controlled by two parameters: **High temperature finish function**, **FF** and **finishing temperature set value**, **dFSP**. (FF is in system configuration menu, please check section 6.1.) If FF is set to ON, this feature is enabled. The dFSP set the finish temperature limit. When the reading temperature is below dFSP temperature, the controller will work as normal. When the temperature rise

over the dFSP, the process will be automatically stopped until you reset the system (please refer figure 4 to reset).

Note 14. Distilling Ending Option: dEO.

When the timer counting ends, or when the distill finishing temperature is reached, the controller will generate six long beeps. The top display will switch between the current temperature and "End" alternately. After the process ends, the power output can be configured either to continue heating, or shut off. This is controlled ending options, dEO. Set it to ON for continue heating, set it to OFF to turn off the output.

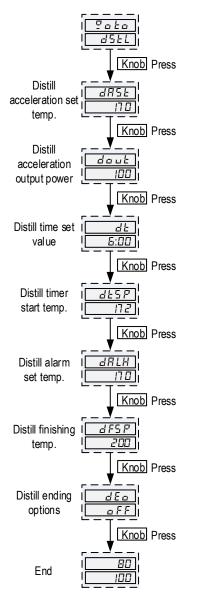


Figure 8. Flow chart of setting distilling parameters

If you want to use the timer as a regular timer without correlating to the temperature setting, you can set dFSP below the ambient temperature (or just zero). The timer will start as soon as the regulator is powered up. You can use the reset button (rSt) to reset the timer at any time.

7. External Relay Settings

7.1 Introductory

This controller contains two normally open (N.O.) relays that can be used for controlling external devices such as buzzers, contactors, and valves. The relays are dry switches that can handle a 3 Amps of resistive loads or a 1 Amp of inductive loads. These relays can be programmed as process (absolute) alarms,

deviation alarms, or act in synchronization with the controller's timer as well as the acceleration phase. There are a few advanced features of these relays. The action of a relay can be synchronized with alarm conditions, can be a single pulse for a pre-determined time duration, or can be latched action that can only be turned off by human intervention. The relays can be set either to close the contacts, or to open the contacts when alarm condition meets. In addition, Relay 1 (AL1) can be set to act in synchronization with the acceleration heating phase of the main control output. This feature enables the user to control external contactors and so to employ extra heating elements during acceleration phase. The Relay 2 (AL2) can be set to act in synchronization with the timer for mashing or boiling/distilling. User can use this Relay 2 to drive an external indicator or a valve that need to be turn on when the time is up.

Parameters for configuring relays are divided into two groups. The first group of parameters is for determining the functions of relays. They are nested under the system configuration settings (see Table 4). Once they are set for a particular application, there is no need to change them. The second group of parameters is for alarm on/off temperatures and alarm durations. These parameters are nested under alarm configuration settings (see Table 7).

7.2 Relay related parameters in system settings

In the menu for system settings, there are five pairs of parameters for configuring relays.

Table 4. Alarm parameters in system configuration

Table 4. A	able 4. Alarm parameters in system configuration						
	System Configuration (Alarm parameters part 1)						
Display	Code Description Setting Init Range Sett				Remark		
E F							
FF							
Edle		Discourse	(
РЬ		Please rei	fer Section 6.1				
FILE							
[-F							
r L I	RL1 Relay 1 mode Pr, De, Acc, Off		, , ,	Off	Note 15		
L9 E	Lgc1	Logic mode for relay 1	RL-C, RL-O	RL-C	Note 16		
LRE I	LAt1	Latching or pulse action selection for relay 1	Y, PUL, N	Ν	Note 17		
5 IL 1	SiL1 Alarm suppression for Y, N N Note 18						
r L2	Pr De Time				Note 15		
L9 E 2	Lgc2	Logic mode for relay 2	RL-C, RL-O	RL-C	Note 16		
LRE2	LAt2	Latching or pulse action selection for relay 2	Y, PUL, N	Ν	Note 17		
5 IL <i>2</i>	SiL2	Alarm suppression for relay 2	Y, N	Ν	Note 18		
μеч	Key	Multi-function key assigment	On, Off	Off	Note 19		

Note 15.: RL (Relay Mode), determines which mode a relay should be working at. RL1 is for Relay 1 and RL2 is for Relay 2. Each relay has three modes. Process Alarm Mode (Pr) (also called Absolute Alarm) and Deviation Alarm Mode (De) are available for both Relay 1 and Relay 2. In addition, Acceleration Mode (Acc), which set the relay to synchronize with the acceleration phase of the main control output for the SSR, is only available to Relay 1. Timer Mode (Time), which set the relay to synchronize with the timer function, is only available to Relay 2.

When a relay is set as a Process Alarm, it can either be triggered by a process high alarm, by a process low alarm, or by both.

When a relay is set as a Deviation Alarm, it can be triggered by a deviation high alarm, by a deviation low alarm, or by both. Deviation alarms are only available

in Mashing Mode. There is no set temperature in Boiling Mode or in Distilling Mode, and hence no deviation alarms.

When Relay 1 is set to work in Acceleration Mode, the relay action will be synchronized with the Acceleration Set Temperature. It can be set to pull-in either when the temperature is in the acceleration zone, or when the temperature is out of the acceleration zone. For details on how this can be used, please contact customer support.

When Relay 2 is set to work in Timer Mode, the relay action will be synchronized with the Mashing/Distilling Timer Start Temperature. It can be set to pull-in either when timer counting is finished, or when during the timer is counting. For details on how this can be used, please see note 7 & 11.

Table 5. Conditions of Relays Become Active or Inactive.

Relay	Mashing Mode Boiling/Distilling Mode			Mashing Mode		ling Mode
Mode	Active	Inactive	Active	Inactive		
Process Alarm	PV < AL or $PV \ge AH$	AL ≤ PV < AH	PV < AL or PV > AH	AL < PV < AH		
Deviation Alarm*	PV ≥ (SV + AH), or PV < (SV - AL)	(SV - AL) ≪ PV < (SV + AH)	NA	NA		
Acceleration	PV < SV**	$PV \ge SV$	PV < dAST	$PV \ge dAST$		
Timer***	PV < tSP, or Preset Mashing Timer (t) is reached	PV > tSP	PV < dtSP , or Preset Distilling Timer (dt) is reached	$PV \ge dtSP$		

Note *: Deviation Alarms are not available in Distilling Mode because there is no temperature set point.

Note **. The precise turning off point is determined by the AI program.

Note ***: Timer function **tF** should be set to ON if user wants to set Relay 2 to Timer mode (**RL2** = Time). If timer function **tF** was set of OFF, Relay 2 will remain active.

Note 16. Lgc (Relay Logic), determines relay status before and after the alarm conditions are met. It can be set to Logic Close (**RL-C**) or Logic Open (**RL-O**). When a relay is set to **RL-C**, the relay is a NO relay, it stays open when it is inactive; the relay contacts close (pull-in) when alarm conditions are met. When a relay is set to **RL-O**, the relay is essentially a NC relay, it stays closed when it is inactive; the relay contacts open up (drop-out) when alarm conditions are met. For most applications, the relay should be set to Logic Close (**RL-C**), which is the default setting. The Logic Open (**RL-O**) configuration is useful if user want to turn on a device when the temperature is not in the alarm zone.

Note 17. LAt (Latching, Pulsing, or Non-Latching Relay Action), determines the relay actions when alarm conditions are met and/or then removed. It can be set to Y for Latching Mode, PUL for pulsing mode, or N for Normal Mode.

When LAt is set to \mathbf{Y} (Latching Mode), the relay action is latched. It will not release even if the alarm condition is removed. To release the relay, user must reboot the controller or use the Reset Key to cancel the relay action (see note 23 for details).

When **LAt** is set to **PUL** (Pulsing Mode), the replay action is a timed single pulse. When the alarm condition is met, relay will be activated only for a pre-determined period of time. User can set the pulse duration by the **AP** parameter in the menu of alarm settings; it ranges from 1 to 100 seconds. This feature is useful in situations where a user only need to ring the buzzer for a short time or want to drive an external load for a fixed amount of time duration. When LAt it is set to ${\bf N}$ (Non-Latching), the relay action will follow the alarm condition. The relay stops its action when the alarm condition is removed.

Note 18. SiL (Relay Silence, also called Alarm Suppression), determines whether a relay action should be suppressed when controller is just powered up. When SiL is set to Y, Relay Silence is enabled; when SiL is set to N, Relay Silence is disabled.

Relay Silence/Alarm Suppression is only supposed to work when: 1) controller is just powered up, and 2) the condition that deactivates the Relay Silence is not met yet. This feature is available in all relay modes, however, the deactivation condition varies.

Relay Mode	Mashing Mode	Distilling Mode
Process Alarm	PV≥SV	PV ≥ dTSP
Deviation Alarm	PV≥SV	NA
Acceleration	PV ≥ SV	Mashing Set Point (SV)
Timer*	NA	NA

For example, if a controller is working in mashing mode and the relay is set as a process alarm, then alarm suppression will apply to the low limit alarm until the process temperature reaches the mashing temperature. For another instance, if a controller is working in boiling/distilling mode, Relay 1 RL1 = ACC, Lgc1 = LC-C, LAt1 = N. If SiL1 = N, Relay 1 should pull-in when PV < dAST and drop-out when PV >= dAST. But when SiL1 = Y, Relay 1 will not be activated when PV < dAST unless PV has reached mashing temperature.

This feature is useful for the following two situations: A) When a relay is set as low limit alarm or deviation alarm, and you don't want the relay to pull in when you just power up the controller as the start-up temperature will be in the alarm zone. B) When Relay 2 is set to Timer Mode and it is supposed to trigger a buzzer when the timer is up. Without Alarm Suppression, the relay would pull-in when controller is just powered up before the timer starts counting.

Note 19. Function Key

There are two function keys named "A" and "B" which can be used to reset/cancel the action of the corresponding relays when they are activated. Key "A" on the lower left corner is for Relay 1, Key "B" on the lower right corner is for Relay 2. They only work in Latching Mode or Non-Latching Mode (LAt = Y or N), and they have no effect in Pulsing Mode (LAt = PuL). By default, Function Keys are disabled. To enable these two keys, set the parameter "Key", which is the last parameter listed in the menu of system configuration, to "on" (Key = on).

For a relay whose logic mode is set to Logic Close (Lgc = RL-C), press the function key when the relay is activated (close) will cancel the relay action, i.e., the relay will drop out (open). For a relay whose logic mode is set to Logic Open (Lgc = RL-O), press the function key when the relay is activated (open) will cancel the relay action, i.e., the relay will pull in (close).

7.3 Parameters in Alarm Settings

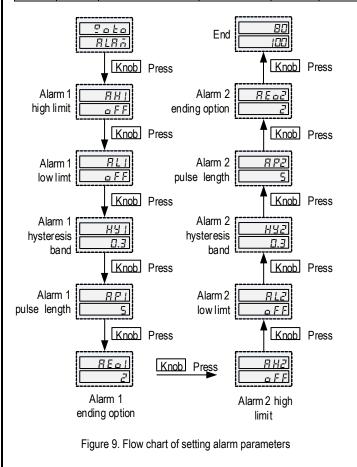
In the menu of alarm settings, there are four sets of parameters for each relay: AH, AL, HY and AP (Table 7 & Figure 9).

Note 20. AH (High Alarm), determines at what temperature that is higher than the set temperature the alarm relay will be activated. This setting applies to both process and derivation alarms. The unit is in degree C or F. AH1 is for Relay 1 and AH2 for Relay 2. It can be set to any temperature that the controller is capable to reading, or set to "off". If a relay is set to process alarm, the value of AH represents the absolute high alarm; the relay will be activated when PV >= AH. If a relay is set to deviation alarm, the value of AH represents the temperature deviation above the set value; the relay will be activated when PV >= (SV+ AH).

Note 21. AL (Low Alarm), determines at what temperature that is lower than the set temperature the alarm relay will be activated. This setting applies to both process and derivation alarms. The unit is in degree C or F. It can be set to any

AUBER INSTRUMENTS

temperature that the controller is capable of reading, or set to "off". If a relay is set to process alarm, the value of AL represents the absolute low alarm; the relay will be activated when PV <= AL. If a relay is set to deviation alarm, the value of AL represents the temperature deviation below the set value; the relay will be activated when PV <= (SV- AL).


Tip 1: In Process Alarm Mode, AL should always be less than AH (AL1 < AH1, AL2 < AH2), otherwise, the alarm relay will stay activated all the time.

Tip 2: A relay can be set to work for process/deviation high alarm only (i.e., set AL = off), for low alarm only (i.e., set AH = off), or for both high and low alarm.

Tip 3: Deviation alarm settings are not valid for Distilling Mode (on DSPR220 or DSPR400) where there is no set temperature.

Table 7. Alarm parameters listed in alarm setting menu

Alarm Configuration (Alarm parameters part 2)						
Display	Code	Description Setting Range		Initial Setting	Remark	
8H	AH1	Alarm 1 high limit	OFF, 1 ~ 9999	OFF	Note 20	
AL I	AL1	Alarm 1 low limit	OFF, 1 ~ 9999	OFF	Note 21	
HY (HY1	Alarm 1 hysteresis band	· · · · · · · · · · · · · · · · · · ·		Note 22	
8 P	AP1	Alarm 1 pulse length	1-100	5	Note 23	
8Eo	AEo1	Alarm 1 ending option	0, 1, 2	2	Note 24	
842	AH1	Alarm 2 high limit	Alarm 2 high limit OFF, 1 ~ 9999 OFF		Note 20	
ALS	AL1	Alarm 2 low limit	Alarm 2 low limit OFF, 1 ~ 9999 O		Note 21	
H9 2	HY1	Alarm 2 hysteresis 0.1-100.0 0.3		Note 22		
828	AP1	Alarm 2 pulse length	1-100	5	Note 23	
8602	AEo2	Alarm 2 ending option	0, 1, 2	2	Note 24	

Note 22. HY (Hysteresis Band), determines the hysteresis band between temperature of activating and deactivating alarms. It is also called differential band by some manufacturer. The unit is degree F or C. For example, Relay 1 is set as a non-latching process alarm with relays settings RL1 = Pr, $Lgc1 = RL_C$, LAt1 = N, AH1 = 200, AL1 = 100 and HY = 3 (temperature unit is F). For the high limit alarm, when the process temperature is greater and equal to 200°F, the relay will pull in; and when process temperature is less than 197°F, relay will drop off. For the low limit alarm, relay will pull in when process temperature is greater or equal to 103°F.

Note 23. AP (Alarm Pulse), determines the time duration of which a relay stays activated. The unit is second. Pulse length can be set from 1 to 100 seconds. This setting is only valid when the Relay Latching Mode is set to Pulsing, i.e., LAt = P.

Note 24. AEO (Alarm Ending Option), determines the alarm relay status when timer is ended. (The top display will switch between the current temperature and "**End**" alternately.) AEO1 is for alarm relay 1 and AEO2 is for alarm relay 2.

AEO parameter can be set to 0, 1 and 2. If AEO = 0 and timer is ended, there is no status change on that specific relay output; if AEO = 1 and timer is ended, that specific relay output will be reset to the initial status automatically; If AEO =2 and timer is ended, user needs to manually press the front key A/key B to reset that alarm 1/alarm 2 to the initial status. For example, if AEO1 = 2 and timer is ended, push front key A to reset alarm 1; if AEO2 = 2 and timer is ended, push front key A to reset alarm 2.

8. Application Examples:

8.1 Example for alcohol distilling

Set the high power accelerated heating limit to 170.0°F (76.7°C) and power output to be at 100% of the element capacity, set distilling power at 30%. Set the foreshots/heads alarm at 172°F. Set the distillation ending criterial to be either when temperature rise to 200.0 °F or when the time is more than 3 hours. When the controller is powered up, it will heat the wash with full power. After the wash temperature reaches 170°F, the power is automatically reduced to 30%. When temperature reaches 172°F, the alarm will beep four times to notify the operator that temperature is close to the alcohol boil temperature so that he can remove the heads. Soon the temperature rise to 173.0°F, the timer is activated. After distilling for a while the content of alcohol is depleted and temperature starts to rise. Once the temperature reaches 200.0°F, the heater is turned off and the controller will send long beeps and flashing "End" on the display. if the temperature does not rise to 200.0°F after 3 hours, the heater will also be turned off. During the distillation, the user can use the rotary knob to fine tune the boil at any time. The figure below shows how the power is correlated to the temperature and time.

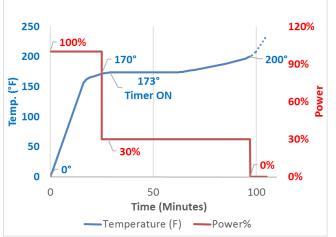


Figure 10. Example for alcohol distilling (Power output correction with temperature and time.) Setting: dAST=170, dOUT=100, dt=3:00, dFSP=200.0, dALH=172.0 dtSP=173, tF=ON, FF=ON, dEO=OFF. Dial=P30.

AUBER INSTRUMENTS

WWW.AUBERINS.COM

1. Timer operation example:

The timer can be used for several ways to help the distilling process.

1) Use it to automatically control the distilling time (distilling mode).

Set the parameter as following

tF=on, dtSP=210, tdIr=dn, dEO=OFF, dt=1:30,

The timer will start to count when temperature reaches 210 degrees. The timer will count down from 1:30, when time out, the controller will stop heating, beeps, and flash "End".

2) Use the timer as a regular timer (distilling mode).

Set dtSP below the ambient temperature so that timer is available, set dt to a very long time so that it will not end before operator decide to end the distill. The counting direction should be up. Use the reset button (rSt) to reset the timer at any time

tF=on, dtSP=50, tdIr=up, dEO=on, dt=60:00.

3) Use the timer as a regular timer (mashing mode).

Set tSP below the ambient temperature so that timer is available, set t to a very long time so that it will not end before operator decide to end the mash. The counting direction should be up. Use the reset button (rSt) to reset the timer at any time

tF=on, tSP=50, tdlr=up, EO=on, t=60:00.

2. Use it as a manual regulator (similar to DSPR1)

To use it as manual regulator with temperature reading, please set it to distilling mode. Disable timer and high temperature turn off function. Set distilling acceleration set temperature below ambient temperature (or just zero). Then you can rotate the knob to adjust the power.

Mode=distilling, tF=off, FF=off, dAST=0

9. Wiring Examples

Example 1. Here are two basic wiring diagrams of how to connect a DC triggered AC SSR with this power regulator.

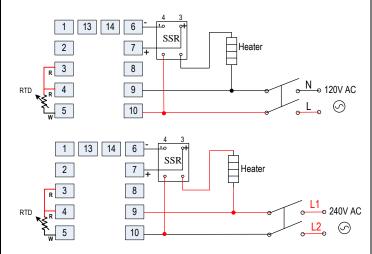


Figure 11. Wiring examples of controlling a heater with SSR and DSPR400 in a 120VAC system (upper) and in a 240VAC system (lower).

Example 2. Here is the wiring diagram of how to wire an auxiliary heating element to the controller via a contactor (for acceleration period only).

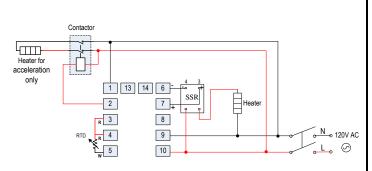


Figure 12. Wiring examples for auxiliary heater. Power supply is 120V AC. Coil voltage to the contactor is 120V AC. Auxiliary heater and its contactor need to be wired to AL1 relay output.

Example 3. Here is the wiring diagram of how to wire two external buzzers to the controller.

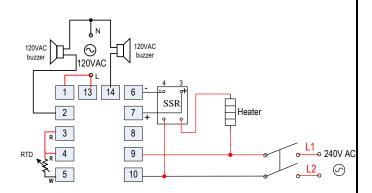


Figure 13. Wiring example of external buzzers. Power supply for the controller and heater is 240V AC. Power supply for two buzzers is 120V AC. AL1 buzzer is for temperature alarm. AL2 buzzer is for timer alarm.

10. Common sensor errors:

This regulator will display error message or incorrect temperature reading if your sensor is not connected, or your sensor connection is bad. The top display of the controller will flash "orAL" and "932" alternately, if you set it to Fahrenheit display (C-F = $^{\circ}$ F); or "orAL" and "500" alternately, if you set it to Celsius display (C-F = $^{\circ}$ C).

Auber Instruments 5755 North Point Parkway, Suite 99 Alpharetta, GA 30022 www.auberins.com

Copyright © 2021 Auber Instruments Inc. All rights reserved. No part of this datasheet shall be copied, reproduced, or transmitted in any way without the prior, written consent of Auber Instruments. Auber Instruments retains the exclusive rights to all information included in this document.